Site Logistics Factors Impacting Resource Use on Construction Sites: A Delphi Study

Author:

Dixit Manish Kumar,Venkatraj Varusha,Pariafsai Fatemeh,Bullen Jason

Abstract

Over 48% of the world’s energy is consumed by buildings in their construction and operation alone, which add to over 39% of global carbon emissions. In addition, the building sector generates over 569 million tons of waste every year within just the United States. Reducing the environmental impacts and construction waste generated by buildings has, therefore, become a concerning global issue. Very few studies have addressed how site logistics planning may impact construction resource use on a site and how it may affect a project’s embodied energy. Site logistics plans control the sequencing of labor, materials, and equipment. Inefficient plans may lead to rework, material damage, and waste generation, requiring additional materials to complete the same task, which eventually increases the embodied energy of a project. In this study, we investigated, identified, and ranked site logistics-related factors that may affect the amount of resources used in a construction project. The Delphi Method is applied to determine, verify, and rank these factors to help improve existing methods of site logistics planning from an embodied energy perspective. Results show that the installer’s skill, technology/equipment, prefabrication, planning and forecasting, and material movement are among the top influential site logistics-related factors that may help reduce construction waste. Considering these factors while developing the site logistics plan will help lower the energy and carbon footprint of a construction project.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference71 articles.

1. Analysis of Construction-Related Factors Affecting the Efficiency Construction Labour;Adebowale;J. Construction Project Manag. Innovation,2015

2. Factors Affecting Material Waste on Construction Sites in Nigeria;Adewuyi;J. Eng. Tech. (Jet),2015

3. Attributes of Design for Construction Waste Minimization: A Case Study of Waste-To-Energy Project;Ajayi;Renew. Sust. Energ. Rev.,2017

4. Life Cycle Environmental Performance of Material Specification: a BIM-Enhanced Comparative Assessment;Ajayi;Int. J. Sust. Building Tech. Urban Dev.,2015

5. Material Waste in the UAE Construction Industry: Main Causes and Minimization Practices;Al-Hajj;Architectural Eng. Des. Manag.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3