An empirical investigation of automation technology as material waste mitigation measure at Johor construction sites

Author:

Abkar Mahdi Mohammed Abdullah,Yunus Riduan,Al-Shameri Ahmed Saleh Ahmed Saif,Harouache Ahmed,Gamil Yaser

Abstract

Automation technology in the construction industry is the use of advanced tools, devices, and processes that reduce manual labor and enhance efficiency in various construction activities. Automation technology can minimize waste, optimize resource utilization, and reduce the environmental impact of construction processes. This study aims to examine the relationship between automation technology adoptions (ATAs) utilizing reduce, reuse, and recycle (3R), building information modeling (BIM), industrialized building systems (IBSs), green building index (GBI), and Internet of Things (IoT) practices toward construction site performance (CSP) to measure their influences on material waste mitigation measures at Johor construction sites. To achieve these goals, five hypotheses were developed to explore the association between ATA and CSP. Data were gathered utilizing an online survey. The participants were contractors and expert practitioners in the Johor construction industry, including architects, project managers, and academicians/researchers. A total of 257 valid responses were used to investigate the assumptions. The partial least squares structural equation modeling (PLS-SEM) procedure was used. The findings revealed that ATA utilizing 3R, BIM, IBS, GBI, and IoT as material mitigation measures positively enhances CSP.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference111 articles.

1. Discriminant validity assessment: use of fornell & larcker criterion versus HTMT criterion;Ab Hamid;J. Phys. Conf. Ser.,2017

2. Establishment and development of ibs in malaysia;Abedi;Sustain. Build. Infrastructure Syst. Our Future Today,2011

3. Acceptance of building information modelling: a survey of professionals in the construction industry in Ghana;Acquah;J. Inf. Technol. Constr.,2018

4. Critical design factors for minimising waste in construction projects: a structural equation modelling approach;Ajayi;Resour. Conservation Recycl.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3