Mitigation of model error effects in neural network-based structural damage detection

Author:

Ponsi Federico,Bassoli Elisa,Vincenzi Loris

Abstract

This paper proposes a damage detection procedure based on neural networks that is able to account for the model error in the network training. Vibration-based damage detection procedures relied on machine learning techniques hold great promises for the identification of structural damage thanks to their efficiency even in presence of noise-corrupted data. However, it is rarely possible in the context of civil engineering to have large amount of data related to the damaged condition of a structure to train a neural network. Numerical models are then necessary to simulate damaged scenarios. However, even if a finite element model is accurately calibrated, experimental results and model predictions will never exactly match and their difference represents the model error. Being the neural network tested and trained with respect to the data generated from the numerical model, the model error can significantly compromise the effectiveness of the damage detection procedure. The paper presents a procedure aimed at mitigating the effect of model errors when using models associated to the neural network. The proposed procedure is applied to two case studies, namely a numerical case represented by a steel railway bridge and a real structure. The real case study is a steel braced frame widely adopted as a benchmark structure for structural health monitoring purposes. Although in the first case the procedure is carried out considering simulated data, we have taken into account some key aspects to make results representative of real applications, namely the stochastic modelling of measurement errors and the use of two different numerical models to account for the model error. Different networks are investigated that stand out for the preprocessing of the dynamic features given as input. Results show the importance of accounting for the model error in the network calibration to efficiently identify damage.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision-based dynamic monitoring of a steel footbridge;Journal of Physics: Conference Series;2024-06-01

2. Multi-sensor and Multi-frequency Data Fusion for Structural Health Monitoring;Lecture Notes in Civil Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3