Modal testing of masonry constructions by ground-based radar interferometry for structural health monitoring: A mini review

Author:

Camassa Domenico,Vaiana Nicolò,Castellano Anna

Abstract

Modal testing is one of the most effective experimental techniques for the structural health monitoring of masonry constructions, as it provides useful information for the calibration of structural models and for the assessment of structural damage. However, the application of modal testing to masonry constructions is sometimes hindered by the complexity of the conventional experimental set-up, which is generally based on contact sensors. In order to overcome this issue, several researchers are exploring the application of the ground-based radar interferometry, which is an increasingly popular measurement technique for remotely monitoring displacement and vibration of structures. Given the recently increasing number of articles on this subject, here we propose a mini review on the most significant works dealing with the application of ground-based radar interferometry for modal testing of masonry constructions. In particular, we show the current state of the art and highlight the main research gaps with the purpose of assessing the effectiveness of ground-based radar interferometry for the structural health monitoring of these constructions. Our mini review is primarily aimed at engineers and scientists who already know about modal testing and radar interferometry technique and are interested in the specific application to masonry constructions.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moderate-coherence sensing with optical cavities: ultra-high accuracy meets ultra-high measurement bandwidth and range;Communications Engineering;2024-01-25

2. A mathematical model for the propagation of wildfires;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

3. In-situ estimation of axial force in tie rods of masonry structures by radar interferometry;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

4. Damage identification of a wind turbine blade from interferometric radar tests;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

5. A Robust Deep Learning-Based Damage Identification Approach for SHM Considering Missing Data;Applied Sciences;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3