Tangled Tales of Mycelium and Architecture: Learning From Failure

Author:

McGaw Janet,Andrianopoulos Alex,Liuti Alessandro

Abstract

Architects, artists and engineers around the world have been experimenting with the potential of mycelium, the vegetative body of a fungus, as a future building material for the past 15 years. It shares many of the positive material attributes of polystyrene but unlike the synthetic material it is fully sustainable and completely biodegradable. Mycelium has also proved to be simple to grow at scale. Its capacity to rapidly grow its tangled hyphae in a multiplicity of directions, digesting nothing more than organic waste, has shown promise for the production of a variety of materials for the building industry. But despite this, mycelium has struggled to find a market within the building industry. Drawing on the literature, this article argues that the challenges have been psychological, aesthetic and economic, rather than technical. Western industrial systems have conditioned us to expect material cultures to be clean, precise and durable. Mycelium is messy and some fungi are known pathogens. Like any living creature it can be unpredictable. Further, while the materials for growing mycelium are cheap, initial production costs for mass production and distribution typical of industrial fabrication are high. The risk for investors in the absence of an assured market stymied early forays into production. But as the environmental crisis becomes more urgent, there is evidence of a growing interest in finding new avenues for production. Centralised large-scale production is only one way forward. Another, which learns from early failures, is mass production through a multiplicity of micro-scale, do-it-yourself systems.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference65 articles.

1. On Electrical Spiking of Ganoderma Resinaceum;Adamatzky;Biophys. Rev. Lett.,2021

2. On Boolean Gates in Fungal Colony;Adamatzky;Biosystems,2020

3. Fungal Mycelium Classified in Different Material Families Based on Glycerol Treatment;Appels;Commun. Biol.,2020

4. Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites;Appels;Mater. Des.,2019

5. Acoustic Panel System Made from Fungi Offers Innovative Circular Design Solution for Workplaces2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3