Metataxonomic insights into the microbial ecology of farm-scale hay, grass or legume, and corn silage produced with and without inoculants

Author:

Kennang Ouamba Alexandre J.,Gagnon Mérilie,Varin Thibault,Chouinard P. Yvan,LaPointe Gisèle,Roy Denis

Abstract

The microbiota of silage is a key determinant of its quality. Although commercial inoculants are often used to improve silage quality, studies to analyze their impact on the microbiota of preserved forage at farm-scale facilities are scarce. We assessed the diversity of viable bacterial communities of hay (unfermented dry forage) and grass or legume (GL) and corn (C) silage to deepen our knowledge of how inoculant addition drives microbial occurrence patterns on dairy farms. Forage samples were collected from 24 dairy farms over two sampling periods. Samples were analyzed by high-throughput sequencing and quantitative PCR after being treated with propidium monoazide to account for viable cells. We found consistent significant differences between hay and silage community structures across sampling periods. Silage was generally dominated by lactic acid bacteria (LAB), while Pantoea and Sphingomonas were the main co-dominant genera in hay. The GL silage dominated by Pediococcus, Weissella, and Bacillus was phylogenetically different from C silage enriched in Acetobacter. The use of inoculants including Lentilactobacillus buchneri either alone or in combination with Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus pentosaceus, or Enterococcus faecium did not systematically prevent the occurrence of undesirable bacteria, especially when corn-based, probably because of factors that can mitigate the effect of inoculation on the microbiota. The core Lactobacillales constituted the dominant LAB in silage with up to 96% relative abundance, indicating either the ubiquity of inoculants or the high competitiveness of epiphytes. Silage chemical profiles varied inconsistently with sampling periods and the use of inoculants. Multivariate multi-table analyses allowed the identification of bacterial clusters mainly driven by moisture and magnesium content in hay, while pH, lactic, and fatty acids were the main drivers for silage. Bacterial network analyses showed considerable variations in the topological roles with the use of inoculants. These results may help evaluate the effectiveness of forage management practices implemented on dairy farms and, therefore, are useful for fine-tuning the search for new additives. Such knowledge can be used by forage makers to adjust processing routines to improve the hygienic quality, nutritional potential, and aerobic stability of preserved forage.

Publisher

Frontiers Media SA

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3