Aerobic Exercise Training-Induced Changes on DNA Methylation in Mild Cognitively Impaired Elderly African Americans: Gene, Exercise, and Memory Study - GEMS-I

Author:

Ngwa Julius S.,Nwulia Evaristus,Ntekim Oyonumo,Bedada Fikru B.,Kwabi-Addo Bernard,Nadarajah Sheeba,Johnson Steven,Southerland William M.,Kwagyan John,Obisesan Thomas O.

Abstract

BackgroundDNA methylation at CpG sites is a vital epigenetic modification of the human genome affecting gene expression, and potentially, health outcomes. However, evidence is just budding on the effects of aerobic exercise-induced adaptation on DNA methylation in older mild cognitively impaired (MCI) elderly African American (AAs). Therefore, we examined the effects of a 6-month aerobic exercise-intervention on genome-wide DNA methylation in elderly AA MCI volunteers.DesignElderly AA volunteers confirmed MCI assigned into a 6-month program of aerobic exercise (eleven participants) underwent a 40-min supervised-training 3-times/week and controls (eight participants) performed stretch training. Participants had maximal oxygen consumption (VO2max) test and Genome-wide methylation levels at CpG sites using the Infinium HumanMethylation450 BeadChip assay at baseline and after a 6-month exercise program. We computed false discovery rates (FDR) using Sidak to account for multiplicity of tests and performed quantitative real-time polymerase chain-reaction (qRT-PCR) to confirm the effects of DNA methylations on expression levels of the top 5 genes among the aerobic participants. CpG sites identified from aerobic-exercise participants were similarly analyzed by the stretch group to quantify the effects of exercise-induced methylation changes among the group of stretch participants.ResultsEleven MCI participants (aerobic: 73% females; mean age 72.3 ± 6.6 years) and eight MCI participants (stretch: 75% female; mean age 70.6 ± 6.7 years) completed the training. Aerobic exercise-training was associated with increases in VO2max and with global hypo- and hypermethylation changes. The most notable finding was CpG hypomethylation within the body of the VPS52 gene (P = 5.4 × 10–26), a Golgi-associated protein, involved in intracellular protein trafficking including amyloid precursor protein. qRT-PCR confirmed a nearly twofold increased expression of VPS52. Other top findings with FDR q-value < 10–5, include hypomethylations of SCARB1 (8.8 × 10–25), ARTN (6.1 × 10–25), NR1H2 (2.1 × 10–18) and PPP2R5D (9.8 × 10–18).ConclusionWe conclude that genome-wide DNA methylation patterns is associated with exercise training-induced methylation changes. Identification of methylation changes around genes previously shown to interact with amyloid biology, intracellular protein trafficking, and lipoprotein regulations provide further support to the likely protective effect of exercise in MCI. Future studies in larger samples are needed to confirm our findings.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3