Downregulation of oxytocin-related genes in periodontitis

Author:

Ghafouri-Fard Soudeh,Gholami Leila,Nazer Naghme,Hussen Bashdar Mahmud,Sayad Arezou,Hajiesmaeili Mohammadreza

Abstract

Periodontitis is a common oral disorder leading to tooth loss in both developed and developing regions of the world. This multifactorial condition is related to the abnormal activity of several molecular pathways, among them are oxytocin-related pathways. In this study, we enrolled 26 patients and 28 controls and assessed the expression of four oxytocin-related genes, namely, FOS, ITPR, RCAN1, and RGS2, in circulation and affected tissues of enrolled individuals using real-time PCR. Expression of FOS was downregulated in total periodontitis tissues compared with total control tissues [ratio of mean expression (RME) = 0.23, P-value = 0.03]. Expression of FOS was also lower in total blood samples of patients compared with total controls. Expression of ITPR was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.16, P-value = 0.01). Moreover, the expression of ITPR was reduced in total blood samples of patients compared with controls (RME = 0.25, P-value = 0.03). Expression of RCAN1 was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.17, P-value = 0.01). However, the expression of RCAN1 was not different in blood samples of affected vs. unaffected individuals. Finally, the expression of RGS2 was lower in total periodontitis tissues compared with total control tissues (RME = 0.24, P-value = 0.01) and in total blood samples of affected individuals compared with controls (RME = 0.42, P-value = 0.05). This study provides data about the association between expressions of oxytocin-related genes and the presence of periodontitis. Future studies are needed to unravel the mechanistic links and find the correlation between expressions of these genes and the pathological stage of periodontitis.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3