Transcription factor ZNF22 regulates blood-tumor barrier permeability by interacting with HDAC3 protein

Author:

Zhu Baicheng,Zhang Lu,Zhou Xinxin,Ning Hao,Ma Teng

Abstract

ObjectiveThe primary goals of this study were to investigate the potential roles of ZNF22 and HDAC3 as a histone deacetylase in regulating an increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect.MethodsThe expression of ZNF22 and HDAC3 in glioma-exposed endothelial cells (GECs) of BTB were detected transcription real-time PCR or western blot. The interaction of ZNF22 and HDAC3 in GECs associated with transcript effect was analyzed by means of Co-Immunoprecipitation and luciferase reporter assay.ResultsIn the present investigation, GECs expressed higher levels of ZNF22 as a zinc finger transcription factor and HDAC3 than endothelial cells. We then affirmed that silencing HDAC3 or ZNF22 led to a reduction in BTB permeability. By bioinformatics analysis, chromatin immunoprecipitation (ChIP) assays and luciferase assay, we found that ZNF22 had a target binding relationship with the promoter regions of ZO-1, Occludin, and Claudin-5 and negatively regulated the expression of ZO-1, Occludin, and Claudin-5. Furthermore, we revealed that HDAC3, as a co-transcript repressor with histone deacetylase activity, could interact with ZNF22 to hinder the expression of TJ-associated proteins, thereby further facilitating the permeability of BTB.ConclusionZNF22 acted as a transcription factor in conjunction with HDAC3 to modulate the expression of TJ-associated proteins, which was correlated with an increase in BTB permeability. These results may provide new strategies and targets for the chemotherapy of gliomas as well as intracranial infections.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3