Author:
Terhürne Patrick,Schwartz Brian,Baur Tobias,Schiller Dominik,Eberhardt Steffen T.,André Elisabeth,Lutz Wolfgang
Abstract
BackgroundEmotions play a key role in psychotherapy. However, a problem with examining emotional states via self-report questionnaires is that the assessment usually takes place after the actual emotion has been experienced which might lead to biases and continuous human ratings are time and cost intensive. Using the AI-based software package Non-Verbal Behavior Analyzer (NOVA), video-based emotion recognition of arousal and valence can be applied in naturalistic psychotherapeutic settings. In this study, four emotion recognition models (ERM) each based on specific feature sets (facial: OpenFace, OpenFace-Aureg; body: OpenPose-Activation, OpenPose-Energy) were developed and compared in their ability to predict arousal and valence scores correlated to PANAS emotion scores and processes of change (interpersonal experience, coping experience, affective experience) as well as symptoms (depression and anxiety in HSCL-11).Materials and methodsA total of 183 patient therapy videos were divided into a training sample (55 patients), a test sample (50 patients), and a holdout sample (78 patients). The best ERM was selected for further analyses. Then, ERM based arousal and valence scores were correlated with patient and therapist estimates of emotions and processes of change. Furthermore, using regression models arousal and valence were examined as predictors of symptom severity in depression and anxiety.ResultsThe ERM based on OpenFace produced the best agreement to the human coder rating. Arousal and valence correlated significantly with therapists’ ratings of sadness, shame, anxiety, and relaxation, but not with the patient ratings of their own emotions. Furthermore, a significant negative correlation indicates that negative valence was associated with higher affective experience. Negative valence was found to significantly predict higher anxiety but not depression scores.ConclusionThis study shows that emotion recognition with NOVA can be used to generate ERMs associated with patient emotions, affective experiences and symptoms. Nevertheless, limitations were obvious. It seems necessary to improve the ERMs using larger databases of sessions and the validity of ERMs needs to be further investigated in different samples and different applications. Furthermore, future research should take ERMs to identify emotional synchrony between patient and therapists into account.
Funder
Deutsche Forschungsgemeinschaft
Subject
Psychiatry and Mental health
Reference75 articles.
1. What is meant by calling emotions basic.;Ekman;Emot Rev.,2011
2. Experiential avoidance as a functional contextual concept.;Boulanger;Emotion Regulation and Psychopathology: A Transdiagnostic Approach to Etiology and Treatment.,2010
3. What is an emotional disorder? A transdiagnostic mechanistic definition with implications for assessment, treatment, and prevention.;Bullis;Clin Psychol.,2019
4. Emotional experience and expression in schizophrenia and depression.;Berenbaum;J Abnorm Psychol.,1992
5. Facial expressivity in the course of schizophrenia and depression.;Gaebel;Eur Arch Psychiatry Clin Neurosci.,2004
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献