Author:
Newson Jennifer J.,Bala Jerzy,Giedd Jay N.,Maxwell Benjamin,Thiagarajan Tara C.
Abstract
Over the past 30 years there have been numerous large-scale and longitudinal psychiatric research efforts to improve our understanding and treatment of mental health conditions. However, despite the huge effort by the research community and considerable funding, we still lack a causal understanding of most mental health disorders. Consequently, the majority of psychiatric diagnosis and treatment still operates at the level of symptomatic experience, rather than measuring or addressing root causes. This results in a trial-and-error approach that is a poor fit to underlying causality with poor clinical outcomes. Here we discuss how a research framework that originates from exploration of causal factors, rather than symptom groupings, applied to large scale multi-dimensional data can help address some of the current challenges facing mental health research and, in turn, clinical outcomes. Firstly, we describe some of the challenges and complexities underpinning the search for causal drivers of mental health conditions, focusing on current approaches to the assessment and diagnosis of psychiatric disorders, the many-to-many mappings between symptoms and causes, the search for biomarkers of heterogeneous symptom groups, and the multiple, dynamically interacting variables that influence our psychology. Secondly, we put forward a causal-orientated framework in the context of two large-scale datasets arising from the Adolescent Brain Cognitive Development (ABCD) study, the largest long-term study of brain development and child health in the United States, and the Global Mind Project which is the largest database in the world of mental health profiles along with life context information from 1.4 million people across the globe. Finally, we describe how analytical and machine learning approaches such as clustering and causal inference can be used on datasets such as these to help elucidate a more causal understanding of mental health conditions to enable diagnostic approaches and preventative solutions that tackle mental health challenges at their root cause.