Experiences of Siblings of Children With Neurodevelopmental Disorders: Comparing Qualitative Analysis and Machine Learning to Study Narratives

Author:

Bastiaansen Jort. A. J.,Veldhuizen Elien E.,De Schepper Kees,Scheepers Floortje E.

Abstract

IntroductionRelatively few studies have focused on the wellbeing, experiences and needs of the siblings of children with a psychiatric diagnosis. However, the studies that have been conducted suggest that the impact of such circumstances on these siblings is significant. Studying narratives of diagnosed children or relatives has proven to be a successful approach to gain insights that could help improve care. Only a few attempts have been made to study narratives in psychiatry utilizing a machine learning approach.MethodIn this current study, 13 narratives of the experiences of siblings of children with a neurodevelopmental disorders were collected through largely unstructured interviews. The interviews were analyzed using the traditional qualitative, hermeneutic phenomenology method as well as latent Dirichlet allocation (LDA), an unsupervised machine learning method clustering words from documents into topics. One aim of this study was to evaluate the experiences of the siblings in order to find leads to improve care and support for these siblings. Furthermore, the outcomes of both analyses were compared to evaluate the role of machine learning in analyzing narratives.ResultsQualitative analysis of the interviews led to the formulation of nine main themes: confrontation with conflicts, coping strategies siblings, need for rest and time for myself, need for support and attention from personal circle, wish for normality, influence on personal choices and possibilities for development, doing things together, recommendations and advices, ambivalence and loyalty. Using unsupervised machine learning (LDA) 24 topics were formed that mostly overlapped with the qualitative themes found. Both the qualitative analysis and the LDA analysis detected themes that were unique to the respective analysis.ConclusionThe present study found that studying narratives of siblings of children with a neurodevelopmental disorder contributes to a better understanding of the subjects' experiences. Siblings cope with ambivalent feelings toward their brother or sister and this emotional conflict often leads to adapted behavior. Several coping strategies are developed to deal with the behavior of their brother or sister like seeking support or ignoring. Devoted support, time and attention from close relatives, especially parents, is needed. The LDA analysis didn't appear useful to distract meaning and context from the narratives, but it was proposed that machine learning could be a valuable and quick addition to the traditional qualitative methods by finding overlooked topics and giving a rudimental overview of topics in narratives.

Funder

Universitair Medisch Centrum Utrecht

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3