Author:
Shiota Yuka,Soma Daiki,Hirosawa Tetsu,Yoshimura Yuko,Tanaka Sanae,Hasegawa Chiaki,Yaoi Ken,Iwasaki Sumie,Kameya Masafumi,Yokoyama Shigeru,Kikuchi Mitsuru
Abstract
Individuals with sub-threshold autism spectrum disorder (ASD) are those who have social communication difficulties but do not meet the full ASD diagnostic criteria. ASD is associated with an atypical brain network; however, no studies have focused on sub-threshold ASD. Here, we used the graph approach to investigate alterations in the brain networks of children with sub-threshold ASD, independent of a clinical diagnosis. Graph theory is an effective approach for characterizing the properties of complex networks on a large scale. Forty-six children with ASD and 31 typically developing children were divided into three groups (i.e., ASD-Unlikely, ASD-Possible, and ASD-Probable groups) according to their Social Responsiveness Scale scores. We quantified magnetoencephalographic signals using a graph-theoretic index, the phase lag index, for every frequency band. Resultantly, the ASD-Probable group had significantly lower small-worldness (SW) in the delta, theta, and beta bands than the ASD-Unlikely group. Notably, the ASD-Possible group exhibited significantly higher SW than the ASD-Probable group and significantly lower SW than the ASD-Unlikely group in the delta band only. To our knowledge, this was the first report of the atypical brain network associated with sub-threshold ASD. Our findings indicate that magnetoencephalographic signals using graph theory may be useful in detecting sub-threshold ASD.
Funder
Japan Society for the Promotion of Science
Subject
Psychiatry and Mental health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献