Incidence Trends and Risk Prediction Nomogram for Suicidal Attempts in Patients With Major Depressive Disorder

Author:

Liang Sixiang,Zhang Jinhe,Zhao Qian,Wilson Amanda,Huang Juan,Liu Yuan,Shi Xiaoning,Sha Sha,Wang Yuanyuan,Zhang Ling

Abstract

Background: Major depressive disorder (MDD) is often associated with suicidal attempt (SA). Therefore, predicting the risk factors of SA would improve clinical interventions, research, and treatment for MDD patients. This study aimed to create a nomogram model which predicted correlates of SA in patients with MDD within the Chinese population.Method: A cross-sectional survey among 474 patients was analyzed. All subjects met the diagnostic criteria of MDD according to the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10). Multi-factor logistic regression analysis was used to explore demographic information and clinical characteristics associated with SA. A nomogram was further used to predict the risk of SA. Bootstrap re-sampling was used to internally validate the final model. Integrated Discrimination Improvement (IDI) and Akaike Information Criteria (AIC) were used to evaluate the capability of discrimination and calibration, respectively. Decision Curve Analysis (DCA) and the Receiver Operating Characteristic (ROC) curve was also used to evaluate the accuracy of the prediction model.Result: Multivariable logistic regression analysis showed that being married (OR = 0.473, 95% CI: 0.240 and 0.930) and a higher level of education (OR = 0.603, 95% CI: 0.464 and 0.784) decreased the risk of the SA. The higher number of episodes of depression (OR = 1.854, 95% CI: 1.040 and 3.303) increased the risk of SA in the model. The C-index of the nomogram was 0.715, with the internal (bootstrap) validation sets was 0.703. The Hosmer–Lemeshow test yielded a P-value of 0.33, suggesting a good fit of the prediction nomogram in the validation set.Conclusion: Our findings indicate that the demographic information and clinical characteristics of SA can be used in a nomogram to predict the risk of SA in Chinese MDD patients.

Funder

Beijing Municipal Science and Technology Commission

Beijing Hospital Authority

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3