How social media expression can reveal personality

Author:

Han Nuo,Li Sijia,Huang Feng,Wen Yeye,Su Yue,Li Linyan,Liu Xiaoqian,Zhu Tingshao

Abstract

BackgroundPersonality psychology studies personality and its variation among individuals and is an essential branch of psychology. In recent years, machine learning research related to personality assessment has started to focus on the online environment and showed outstanding performance in personality assessment. However, the aspects of the personality of these prediction models measure remain unclear because few studies focus on the interpretability of personality prediction models. The objective of this study is to develop and validate a machine learning model with domain knowledge introduced to enhance accuracy and improve interpretability.MethodsStudy participants were recruited via an online experiment platform. After excluding unqualified participants and downloading the Weibo posts of eligible participants, we used six psycholinguistic and mental health-related lexicons to extract textual features. Then the predictive personality model was developed using the multi-objective extra trees method based on 3,411 pairs of social media expression and personality trait scores. Subsequently, the prediction model’s validity and reliability were evaluated, and each lexicon’s feature importance was calculated. Finally, the interpretability of the machine learning model was discussed.ResultsThe features from Culture Value Dictionary were found to be the most important predictors. The fivefold cross-validation results regarding the prediction model for personality traits ranged between 0.44 and 0.48 (p < 0.001). The correlation coefficients of five personality traits between the two “split-half” datasets data ranged from 0.84 to 0.88 (p < 0.001). Moreover, the model performed well in terms of contractual validity.ConclusionBy introducing domain knowledge to the development of a machine learning model, this study not only ensures the reliability and validity of the prediction model but also improves the interpretability of the machine learning method. The study helps explain aspects of personality measured by such prediction models and finds a link between personality and mental health. Our research also has positive implications regarding the combination of machine learning approaches and domain knowledge in the field of psychiatry and its applications to mental health.

Funder

Institute of Psychology, Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

Reference72 articles.

1. Personality and disease.;Capitanio;Brain Behav Immun.,2008

2. Personality Traits

3. Cross-cultural studies of personality traits and their relevance to psychiatry.;Terracciano;Epidemiol Psychiatr Sci.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3