Predicting non-improvement of symptoms in daily mental healthcare practice using routinely collected patient-level data: a machine learning approach

Author:

Franken Katinka,ten Klooster Peter,Bohlmeijer Ernst,Westerhof Gerben,Kraiss Jannis

Abstract

ObjectivesAnxiety and mood disorders greatly affect the quality of life for individuals worldwide. A substantial proportion of patients do not sufficiently improve during evidence-based treatments in mental healthcare. It remains challenging to predict which patients will or will not benefit. Moreover, the limited research available on predictors of treatment outcomes comes from efficacy RCTs with strict selection criteria which may limit generalizability to a real-world context. The current study evaluates the performance of different machine learning (ML) models in predicting non-improvement in an observational sample of patients treated in routine specialized mental healthcare.MethodsIn the current longitudinal exploratory prediction study diagnosis-related, sociodemographic, clinical and routinely collected patient-reported quantitative outcome measures were acquired during treatment as usual of 755 patients with a primary anxiety, depressive, obsessive compulsive or trauma-related disorder in a specialized outpatient mental healthcare center. ML algorithms were trained to predict non-response (< 0.5 standard deviation improvement) in symptomatic distress 6 months after baseline. Different models were trained, including models with and without early change scores in psychopathology and well-being and models with a trimmed set of predictor variables. Performance of trained models was evaluated in a hold-out sample (30%) as a proxy for unseen data.ResultsML models without early change scores performed poorly in predicting six-month non-response in the hold-out sample with Area Under the Curves (AUCs) < 0.63. Including early change scores slightly improved the models’ performance (AUC range: 0.68–0.73). Computationally-intensive ML models did not significantly outperform logistic regression (AUC: 0.69). Reduced prediction models performed similar to the full prediction models in both the models without (AUC: 0.58–0.62 vs. 0.58–0.63) and models with early change scores (AUC: 0.69–0.73 vs. 0.68–0.71). Across different ML algorithms, early change scores in psychopathology and well-being consistently emerged as important predictors for non-improvement.ConclusionAccurately predicting treatment outcomes in a mental healthcare context remains challenging. While advanced ML algorithms offer flexibility, they showed limited additional value compared to traditional logistic regression in this study. The current study confirmed the importance of taking early change scores in both psychopathology and well-being into account for predicting longer-term outcomes in symptomatic distress.

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3