Applying neural network algorithms to ascertain reported experiences of violence in routine mental healthcare records and distributions of reports by diagnosis

Author:

Mason Ava J. C.,Bhavsar Vishal,Botelle Riley,Chandran David,Li Lifang,Mascio Aurelie,Sanyal Jyoti,Kadra-Scalzo Gioulaina,Roberts Angus,Williams Marcus,Stewart Robert

Abstract

IntroductionExperiences of violence are important risk factors for worse outcome in people with mental health conditions; however, they are not routinely collected be mental health services, so their ascertainment depends on extraction from text fields with natural language processing (NLP) algorithms.MethodsApplying previously developed neural network algorithms to routine mental healthcare records, we sought to describe the distribution of recorded violence victimisation by demographic and diagnostic characteristics. We ascertained recorded violence victimisation from the records of 60,021 patients receiving care from a large south London NHS mental healthcare provider during 2019. Descriptive and regression analyses were conducted to investigate variation by age, sex, ethnic group, and diagnostic category (ICD-10 F chapter sub-headings plus post-traumatic stress disorder (PTSD) as a specific condition).ResultsPatients with a mood disorder (adjusted odds ratio 1.63, 1.55-1.72), personality disorder (4.03, 3.65-4.45), schizophrenia spectrum disorder (1.84, 1.74-1.95) or PTSD (2.36, 2.08-2.69) had a significantly increased likelihood of victimisation compared to those with other mental health diagnoses. Additionally, patients from minority ethnic groups (1.10 (1.02-1.20) for Black, 1.40 (1.31-1.49) for Asian compared to White groups) had significantly higher likelihood of recorded violence victimisation. Males were significantly less likely to have reported recorded violence victimisation (0.44, 0.42-0.45) than females.DiscussionWe thus demonstrate the successful deployment of machine learning based NLP algorithms to ascertain important entities for outcome prediction in mental healthcare. The observed distributions highlight which sex, ethnicity and diagnostic groups had more records of violence victimisation. Further development of these algorithms could usefully capture broader experiences, such as differentiating more efficiently between witnessed, perpetrated and experienced violence and broader violence experiences like emotional abuse.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3