Causal role of immune cells in bipolar disorder: a Mendelian randomization study

Author:

Wang Mengxuan,Wang Shuo,Yuan Guoshan,Gao Mingzhou,Zhao Xiyan,Chu Zhenhan,Gao Dongmei

Abstract

BackgroundThe understanding of the immunological mechanisms underlying bipolar disorder (BD) has enhanced in recent years due to the extensive use of high-density genetic markers for genotyping and advancements in genome-wide association studies (GWAS). However, studies on the relationship between immune cells and the risk of BD remain limited, necessitating further investigation.MethodsBidirectional two-sample Mendelian Randomization (MR) analysis was employed to investigate the causal association between immune cell morphologies and bipolar disorder. Immune cell traits were collected from a research cohort in Sardinia, whereas the GWAS summary statistics for BD were obtained from the Psychiatric Genomics Consortium. Sensitivity analyses were conducted, and the combination of MR-Egger and MR-Presso was used to assess horizontal pleiotropy. Cochran’s Q test was employed to evaluate heterogeneity, and the results were adjusted for false discovery rate (FDR).ResultsThe study identified six immune cell phenotypes significantly associated with BD incidence (P< 0.01). These phenotypes include IgD- CD27- %lymphocyte, CD33br HLA DR+ CD14- AC, CD8 on CD28+ CD45RA+ CD8br, CD33br HLA DR+ AC, CD14 on CD14+ CD16+ monocyte, and HVEM on CD45RA- CD4+. After adjusting the FDR to 0.2, two immune cell phenotypes remained statistically significant: IgD-CD27-% lymphocyte (OR=1.099, 95% CI: 1.051-1.149, P = 3.51E-05, FDR=0.026) and CD33br HLA DR+ CD14-AC (OR=0.981, 95% CI: 0.971-0.991, P = 2.17E-04, FDR=0.079). In the reverse MR analysis, BD significantly impacted the phenotypes of four monocytes (P< 0.01), including CD64 on CD14+ CD16+ monocyte, CD64 on monocyte, CX3CR1 on CD14- CD16-, CD64 on CD14+ CD16- monocyte. However, after applying the FDR correction (FDR < 0.2), no statistically significant results were observed.ConclusionsThis MR investigation reveals associations between immune cell phenotypes, bipolar disorder, and genetics, providing novel perspectives on prospective therapeutic targets for bipolar disorder.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3