Author:
Chao Wang,Wang Enguo,Yuan Tian,He Qingqing,Zhang Entao,Zhao Junfeng
Abstract
Developmental dyscalculia (DD) is characterized by insufficient mathematical learning ability and weaker mathematical performance than peers who are developmentally typical. As a subtype of learning disability, developmental dyscalculia contributes to deep cognitive processing deficits, mainly manifested as a lack of numerical processing ability. This study utilized event-related potentials (ERPs) technology to examine the negative priming effects (NP) between children with and without DD. Behaviorally, trends in mean reaction time (RT) were consistent between children with and without DD under prime and control conditions. The developmental dyscalculia group and the typical developmental (TD) children group showed a significant negative priming effect. However, the magnitude of the NP was significantly different between two groups, with the magnitude being significantly higher in the TD group than the DD group. In terms of the ERPs results, there were significantly larger amplitudes of P100, P200, and P300 in the TD group than that of children with DD. At the same time, in the DD group, N100 and P300 latency were significantly delayed in some electrodes than the TD group. The results indicated that there were characteristic inhibition deficits in children with DD. Inhibition defects in children with DD might be the underlying cause of the development of digital processing ability of children with DD.
Subject
Psychiatry and Mental health