Unobtrusive Sensing Technology for Quantifying Stress and Well-Being Using Pulse, Speech, Body Motion, and Electrodermal Data in a Workplace Setting: Study Concept and Design

Author:

Izumi Keisuke,Minato Kazumichi,Shiga Kiko,Sugio Tatsuki,Hanashiro Sayaka,Cortright Kelley,Kudo Shun,Fujita Takanori,Sado Mitsuhiro,Maeno Takashi,Takebayashi Toru,Mimura Masaru,Kishimoto Taishiro

Abstract

Introduction: Mental disorders are a leading cause of disability worldwide. Depression has a significant impact in the field of occupational health because it is particularly prevalent during working age. On the other hand, there are a growing number of studies on the relationship between “well-being” and employee productivity. To promote healthy and productive workplaces, this study aims to develop a technique to quantify stress and well-being in a way that does not disturb the workplace.Methods and analysis: This is a single-arm prospective observational study. The target population is adult (>20 years old) workers at companies that often engage in desk work; specifically, a person who sits in front of a computer for at least half their work hours. The following data will be collected: (a) participants' background characteristics; (b) participants' biological data during the 4-week observation period using sensing devices such as a camera built into the computer (pulse wave data extracted from the facial video images), a microphone built into their work computer (voice data), and a wristband-type wearable device (electrodermal activity data, body motion data, and body temperature); (c) stress, well-being, and depression rating scale assessment data. The analysis workflow is as follows: (1) primary analysis, comprised of using software to digitalize participants' vital information; (2) secondary analysis, comprised of examining the relationship between the quantified vital data from (1), stress, well-being, and depression; (3) tertiary analysis, comprised of generating machine learning algorithms to estimate stress, well-being, and degree of depression in relation to each set of vital data as well as multimodal vital data.Discussion: This study will evaluate digital phenotype regarding stress and well-being of white-collar workers over a 4-week period using persistently obtainable biomarkers such as heart rate, acoustic characteristics, body motion, and electrodermal activity. Eventually, this study will lead to the development of a machine learning algorithm to determine people's optimal levels of stress and well-being.Ethics and dissemination: Collected data and study results will be disseminated widely through conference presentations, journal publications, and/or mass media. The summarized results of our overall analysis will be supplied to participants.Registration: UMIN000036814

Funder

Japan Agency for Medical Research and Development

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

Reference30 articles.

1. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017;James;Lancet,2018

2. KawakamiN A study on epidemiological survey on mental health: comprehensive research report: 2004-2006 Ministry of Health, Labour and Welfare Grant-in-Aid for Health Science Research Project2007

3. Labour and Welfare Disability Welfare Promotion Project Subsidy: ‘Estimation of Social Cost of Mental Illness’ Business Report2011

4. The benefits of frequent positive affect: does happiness lead to success?;Lyubomirsky;Psychol Bull,2005

5. An overview of heart rate variability metrics and norms;Shaffer;Front Public Heal,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3