Developing prediction models for symptom severity around the time of discharge from a tertiary-care program for treatment-resistant psychosis

Author:

Lee Lik Hang N.,Procyshyn Ric M.,White Randall F.,Gicas Kristina M.,Honer William G.,Barr Alasdair M.

Abstract

Antipsychotics are the only therapeutic class indicated in the symptomatic management of psychotic disorders. However, individuals diagnosed with schizophrenia or schizoaffective disorder may not always benefit from these first-line agents. This refractoriness to conventional treatment can be difficult to address in most clinical settings. Therefore, a referral to a tertiary-care program that is better able to deliver specialized care in excess of the needs of most individuals may be necessary. The average outcome following a period of treatment at these programs tends to be one of improvement. Nonetheless, accurate prognostication of individual-level responses may be useful in identifying those who are unlikely to improve despite receiving specialized care. Thus, the main objective of this study was to predict symptom severity around the time of discharge from the Refractory Psychosis Program in British Columbia, Canada using only clinicodemographic information and prescription drug data available at the time of admission. To this end, a different boosted beta regression model was trained to predict the total score on each of the five factors of the Positive and Negative Syndrome Scale (PANSS) using a data set composed of 320 hospital admissions. Internal validation of these prediction models was then accomplished by nested cross-validation. Insofar as it is possible to make comparisons of model performance across different outcomes, the correlation between predictions and observations tended to be higher for the negative and disorganized factors than the positive, excited, and depressed factors on internal validation. Past scores had the greatest effect on the prediction of future scores across all 5 factors. The results of this study serve as a proof of concept for the prediction of symptom severity using this specific approach.

Funder

Provincial Health Services Authority

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3