Intraindividual time-varying dynamic network of affects: linear autoregressive mixed-effects models for ecological momentary assessment

Author:

Pooseh Shakoor,Kalisch Raffael,Köber Göran,Binder Harald,Timmer Jens

Abstract

An interesting recent development in emotion research and clinical psychology is the discovery that affective states can be modeled as a network of temporally interacting moods or emotions. Additionally, external factors like stressors or treatments can influence the mood network by amplifying or dampening the activation of specific moods. Researchers have turned to multilevel autoregressive models to fit these affective networks using intensive longitudinal data gathered through ecological momentary assessment. Nonetheless, a more comprehensive examination of the performance of such models is warranted. In our study, we focus on simple directed intraindividual networks consisting of two interconnected mood nodes that mutually enhance or dampen each other. We also introduce a node representing external factors that affect both mood nodes unidirectionally. Importantly, we disregard the potential effects of a current mood/emotion on the perception of external factors. We then formalize the mathematical representation of such networks by exogenous linear autoregressive mixed-effects models. In this representation, the autoregressive coefficients signify the interactions between moods, while external factors are incorporated as exogenous covariates. We let the autoregressive and exogenous coefficients in the model have fixed and random components. Depending on the analysis, this leads to networks with variable structures over reasonable time units, such as days or weeks, which are captured by the variability of random effects. Furthermore, the fixed-effects parameters encapsulate a subject-specific network structure. Leveraging the well-established theoretical and computational foundation of linear mixed-effects models, we transform the autoregressive formulation to a classical one and utilize the existing methods and tools. To validate our approach, we perform simulations assuming our model as the true data-generating process. By manipulating a predefined set of parameters, we investigate the reliability and feasibility of our approach across varying numbers of observations, levels of noise intensity, compliance rates, and scalability to higher dimensions. Our findings underscore the challenges associated with estimating individualized parameters in the context of common longitudinal designs, where the required number of observations may often be unattainable. Moreover, our study highlights the sensitivity of autoregressive mixed-effect models to noise levels and the difficulty of scaling due to the substantial number of parameters.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3