Development of a multivariate prediction model for antidepressant resistant depression using reward-related predictors

Author:

Liu Xiao,Read Stephen J.

Abstract

IntroductionIndividuals with depression who do not respond to two or more courses of serotonergic antidepressants tend to have greater deficits in reward processing and greater internalizing symptoms, yet there is no validated self-report method to determine the likelihood of treatment resistance based on these symptom dimensions.MethodsThis online case-control study leverages machine learning techniques to identify differences in self-reported anhedonia and internalizing symptom profiles of antidepressant non-responders compared to responders and healthy controls, as an initial proof-of-concept for relating these indicators to medication responsiveness. Random forest classifiers were used to identify a subset from a set of 24 reward predictors that distinguished among serotonergic medication resistant, non-resistant, and non-depressed individuals recruited online (N = 393). Feature selection was implemented to refine model prediction and improve interpretability.ResultsAccuracies for full predictor models ranged from .54 to .71, while feature selected models retained 3-5 predictors and generated accuracies of .42 to .70. Several models performed significantly above chance. Sensitivity for non-responders was greatest after feature selection when compared to only responders, reaching .82 with 3 predictors. The predictors retained from feature selection were then explored using factor analysis at the item level and cluster analysis of the full data to determine empirically driven data structures.DiscussionNon-responders displayed 3 distinct symptom profiles along internalizing dimensions of anxiety, anhedonia, motivation, and cognitive function. Results should be replicated in a prospective cohort sample for predictive validity; however, this study demonstrates validity for using a limited anhedonia and internalizing self-report instrument for distinguishing between antidepressant resistant and responsive depression profiles.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3