The combining ability of extra-early maturing quality protein maize (Zea mays) inbred lines and the performance of their hybrids in Striga-infested and low-nitrogen environments

Author:

Okunlola Gbemisola,Badu-Apraku Baffour,Ariyo Omolayo,Ayo-Vaughan Moninuola

Abstract

Maize production in sub-Saharan Africa (SSA) faces challenges due to the damage caused by the parasitic weed, Striga hermonthica (Del.) Benths and low soil nitrogen. To address these constraints and improve food security and nutrition, this study assessed the combining ability of 47 inbred lines and four testers, grouped them into heterotic groups, identified effective testers, and determined the stability of the lines in hybrid combinations under contrasting research conditions. The study was conducted at Mokwa and Abuja during the 2019 and 2020 growing seasons. One hundred and ninety-six hybrids comprising 188 testcrosses, 6 hybrids derived by intermating the four testers, and two commercial checks were evaluated using a 14 × 14 lattice design with two replicates. Results revealed that under Striga infestation, the best quality protein maize (QPM) hybrid, TZEEQI 468 × TZEEQI 321, outyielded the best check, TZEEQI 342 × TZEEQI 7, by 24%. Under low-N, QPM hybrid, TZEEQI 515 × TZEEQI 321 outyielded the best check, TZEEQI 507 × TZEEQI 7 by 11% while under optimal conditions the best QPM hybrid, TZEEQI 506 × TZEEQI 321 outyielded the best check, TZEEQI 342 × TZEEQI 7 by 2%. General combining ability (GCA) and specific combining ability (SCA) significantly influenced grain yield and other measured traits across the test environments. These indicated the importance of both additive and non-additive genetic variances in trait inheritance. GCA was more important than SCA for grain yield and most traits in contrasting environments. Four inbred lines had significant and positive GCA effects for grain yield under Striga-infested conditions, while three lines had similar GCA effects under low-nitrogen conditions. These lines demonstrated outstanding potential for developing Striga-resistant and low-nitrogen-tolerant hybrids. The study identified four heterotic groups using the heterotic grouping method based on the general combining ability of multiple traits (HGCMAT). Inbred lines TZEEQI 490 and TZEEQI 460 were identified as testers. The QPM hybrid TZEEQI 515 × TZEEQI 321 exhibited outstanding yield and stability across contrasting environments, highlighting the need for extensive on-farm trials to confirm its superiority and potential for commercialization in SSA.

Funder

Bill and Melinda Gates Foundation

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3