Current Progress in Optimising Sustainable Energy Recovery From Cattle Paunch Contents, a Slaughterhouse Waste Product

Author:

Dowd Bronwyn,McDonnell Declan,Tuohy Maria G.

Abstract

Paunch contents are the recalcitrant, lignocellulose-rich, partially-digested feed present in the rumen of ruminant animals. Cattle forage in Europe is primarily from perennial and Italian ryegrasses and/or white clover, so paunch contents from forage-fed cattle in Europe is enriched in these feedstuffs. Globally, due to its underutilisation, the potential energy in cattle paunch contents annually represents an energy loss of 23,216,548,750–27,804,250,000 Megajoules (MJ) and financial loss of up to ~€800,000,000. Therefore, this review aims to describe progress made to-date in optimising sustainable energy recovery from paunch contents. Furthermore, analyses to determine the economic feasibility/potential of recovering sustainable energy from paunch contents was carried out. The primary method used to recover sustainable energy from paunch contents to-date has involved biomethane production through anaerobic digestion (AD). The major bottleneck in its utilisation through AD is its recalcitrance, resulting in build-up of fibrous material. Pre-treatments partially degrade the lignocellulose in lignocellulose-rich wastes, reducing their recalcitrance. Enzyme systems could be inexpensive and more environmentally compatible than conventional solvent pre-treatments. A potential source of enzyme systems is the rumen microbiome, whose efficiency in lignocellulose degradation is attracting significant research interest. Therefore, the application of rumen fluid (liquid derived from dewatering of paunch contents) to improve biomethane production from AD of lignocellulosic wastes is included in this review. Analysis of a study where rumen fluid was used to pre-treat paper sludge from a paper mill prior to AD for biomethane production suggested economic feasibility for CHP combustion, with potential savings of ~€11,000 annually. Meta-genomic studies of bacterial/archaeal populations have been carried out to understand their ruminal functions. However, despite their importance in degrading lignocellulose in nature, rumen fungi remain comparatively under-investigated. Further investigation of rumen microbes, their cultivation and their enzyme systems, and the role of rumen fluid in degrading lignocellulosic wastes, could provide efficient pre-treatments and co-digestion strategies to maximise biomethane yield from a range of lignocellulosic wastes. This review describes current progress in optimising sustainable energy recovery from paunch contents, and the potential of rumen fluid as a pre-treatment and co-substrate to recover sustainable energy from lignocellulosic wastes using AD.

Funder

National University of Ireland, Galway

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3