Soil bacterial community structure at different plant maturity stages in an annual grass–legume production system

Author:

Xie Yixiao,Liu Wen,Li Ping,Bai Shiqie,Li Daxu,Zhang Lixia,Sun Hong,Zheng Yulong,Cheng Qiming,Wang Chunmei,Du Ermei,Gou Wenlong

Abstract

IntroductionTo infer changes in soil function and thus determine appropriate agronomic management practices, this study evaluated the effects of plant maturity stage on root characteristics, soil chemical and enzymatic properties, and soil bacterial community composition in an annual grass–legume production system.MethodsAnnual ryegrass or rye was sown in combination with one of three legume species at a legume ratio of 50%. Eighteen plots (six plant combinations, three replicates per combination, 20 m × 25 m plots) were tilled to a depth of 20 cm after mowing. Soil samples from each plot were collected on four dates as the plants matured: January 4 (H1), March 14 (H2), April 21 (H3), and May 19 (H4). Bacterial community structures were characterized via 16S rRNA high-throught sequencing and the bio-informatics methods were used to evaluate the structural characteristics of soil bacteria.ResultsThe most abundant root growth was observed at the H3 stage. No significant differences in organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium contents (p > 0.05) were observed on any sampling date. Soil collected at the H3 stage exhibited lower acid protease and urease activities (p < 0.05) and higher nitrate reductase activity (p < 0.05). The structure of the microbial community at stage H3 differed markedly from that at other stages, as evidenced by a higher abundance of Proteobacteria, Bacteroidetes, Acidobacteria, and Verrucomicrobia (p < 0.05) and a lower abundance of Actinobacteria, Cyanobacteria, and Planctomycetes (p < 0.05). At the class level, the relative abundances of Sphingobacteria, Betaproteobacteria, and Gammaproteobacteria in soil was higher at H3 stage than those of other stages (p < 0.05). The order level for Sphingomonadales, Sphingobacteriales, and Burkholderiales and at the family level for Chitinophagaceae and Sphingomonadaceae showed the same trend toward higher.ConclusionNutrient cycling in the soil was slowed at the H3 stage, and the loss of nitrogen would also be greater. Measures may need to be taken to improve the nitrogen fertilizer utilization efficiency to reduce denitrification and nitrous oxide production at this stage (the booting stage of grasses and budding stage of legumes).

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3