Comparative simulation of crop productivity, soil moisture and nitrate-N leaching losses for intermediate wheatgrass and maize in Minnesota using the DSSAT model

Author:

Mulla David J.,Tahir Muhammad,Jungers Jacob M.

Abstract

Perennial grain crops are a potential alternative source of staple foods and animal forage that can also provide additional environmental benefits over annual crops. Intermediate wheatgrass (IWG; Thinopyrum intermedium) is a new perennial dual-use crop for grain and forage, with growing interest among stakeholders as it produces grain in a more environmentally sound manner than current annual crops. DSSAT model simulations were performed for maize and a new DSSAT model for IWG based on data collected from field studies conducted during 2013–2015 at three different locations, i.e., Lamberton, Waseca and Crookston using low (zero), medium (60–80 kg ha−1) and high fertilizer nitrogen (N) rates (120–160 kg ha−1). The DSSAT CERES-Maize and CROPGRO-PFM models used as the basis for simulating IWG were calibrated at the high N rate to predict the yield/biomass, soil water balance, and soil nitrogen balance in maize and IWG, respectively, for the medium and low N rate treatments. Model predictions for maize yield and IWG biomass (0.89 >= Nash Sutcliffe Efficiency >= 0.58), soil profile moisture (0.81 >=NSE>=0.53) ranged from very good to satisfactory for maize and the high N rate in IWG, with nearly satisfactory accuracy for IWG under the medium and zero N rates. Simulation results indicate that low, medium and high N rates produced an average IWG biomass of 7.8, 9.7, and 10.5 t ha−1, in addition to observed grain yield of 0.36, 0.49, and 0.45 t ha−1, respectively. The corresponding N rates produced 5.9, 7.9, and 8.7 t ha−1 maize yield. Soil profile moisture under IWG and maize averaged 0.25 and 0.29 m3m−3, respectively. Averaged over N rates and locations, IWG and maize had values for crop evapotranspiration (ETc) of 592 vs. 517 mm; deep percolation of 100.8 vs. 154.5 mm; and nitrate-N leaching losses of 2.6 vs. 17.9 kg ha−1, respectively. Results indicate that perennial IWG not only produced high biomass under rainfed conditions, but also reduced deep percolation by efficiently using soil profile moisture, leading to nitrate-N leaching losses six to seven times lower than for maize.

Funder

Minnesota Department of Agriculture

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3