Traditional Rainwater Management (Haveli cultivation) for Building System Level Resilience in a Fragile Ecosystem of Bundelkhand Region, Central India

Author:

Singh Ramesh,Akuraju Venkataradha,Anantha K. H.,Garg Kaushal K.,Barron Jennie,Whitbread Anthony M.,Dev Inder,Dixit Sreenath

Abstract

This article presents the evidence on how the traditional rainwater management system (haveli system) has contributed toward rehabilitating degraded landscapes and changing them into a productive form in Bundelkhand region of Central India. The haveli system was the lifeline of the region for water security for the last 300 years. Farmers (~1–5%) situated at the upstream of the landscape were harvesting surface runoff in their fields during monsoon by constructing earthen embankments along with provision to drain out water after receding of the monsoon. Farmers traditionally cultivated only during the post-monsoon period, using residual soil moisture along with supplemental irrigation from shallow dug wells. However, this system became defunct due to apathy and poor maintenance. The traditional design of the havelis were also often malfunctioning due to new rainfall patterns and storm events. Farmers are facing new need for haveli rejuvenation and the traditional design and knowledge calls for new innovations, particularly from research and external expertise. In this context, ICRISAT and consortium partners have introduced an innovative approach for haveli rejuvenation by constructing masonry core wall along with outlet at a suitable location. Totally 40 haveli structures were constructed between 2010 and 2021 across seven districts of Bundelkhand region. One of the pilot sites (i.e., Parasai-Sindh) was intensively monitored in order to capture the landscape hydrology, change in land use, cropping intensity and crop productivity, between 2011 and 2017. Out of 750 mm rainfall received during July and September, generated surface runoff is about 135 mm (18% of rainfall) on average. However, rainfall below 450 mm (dry years) rarely generates surplus water as most of the rainfall received in such years are absorbed within the vadose zone, whereas, wet years with over 900 mm rainfall, generate runoff of about 250–300 mm (~30–35%). Rejuvenation of the haveli system created an opportunity to harvest surface runoff within farmers' fields which helped to improve groundwater levels in shallow dug wells (additionally by 2–5 m hydraulic head) which remained available during the following years. This has increased cropping intensity—by converting about 20% of permanent fallow lands into productive agriculture lands—and ensured irrigation availability especially during the critical crop growth stage. This enhanced land and water use efficiency of the system and increased household net income by two to three folds as compared to the baseline status. This article further establishes the link between landscape rejuvenation through haveli system, groundwater resource availability, production system and household income in the fragile ecosystem of Central India. The results are helpful for various stakeholders so that they can take informed decisions on sustainable natural resource management.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3