Combining the microbial agent Rhodopseudomonas palustris strain PSB-06 with fungicides for controlling rice blast

Author:

Wu Xiyang,Chen Yue,Chen Chunyan,Huang Qiang,Qin Yingfei,Zhang Xin,Li Chenggang,Tan Xinqiu,Liu Yong,Zhang Deyong

Abstract

The rice blast disease caused by Magnaporthe oryzae threatens global rice production yields. Tricyclazole and isoprothiolane are widely used fungicides with high activity against rice blast, and our previous study indicated the photosynthetic bacterium Rhodopseudomonas palustris PSB-06 significantly antagonizes rice blast. However the effect of combining these two chemical fungicides with PSB-06 on rice blast control is unclear. Here we test the control effect of photosynthetic bacteria PSB-06 combined with isoprothiolane and tricyclazole on rice blast. The growth of PSB-06 was unaffected by up to 1.25 mg/L of tricyclazole and 0.3 mg/L of isoprothiolane in the photosynthetic medium, indicated the two fungicides have no inhibition on PSB-06. The control efficiency in the field test reached 76.06% when PSB-06 was combined with isoprothiolane. This value was significantly higher than the individual efficiency of PSB-06 (67.99%) and tricyclazole (65.46%) and the combined control efficiency (72.20%) of those two antifungal agents. Our current findings highlighted the potential of combining R. palustris strain PSB-06 with isoprothiolane to control rice blast, providing environmental protection and reducing the use of fungicides.

Funder

National Natural Science Foundation of China

Science and Technology Program of Hunan Province

Natural Science Foundation of Hunan Province

Natural Science Foundation of Hainan Province

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3