Profiling Cultivars Development in Kersting's Groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] for Improved Yield, Higher Nutrient Content, and Adaptation to Current and Future Climates

Author:

Coulibaly Mariam,Bodjrenou Guillaume,Akohoue Félicien,Agoyi Eric Etchikinto,Merinosy Francisco Fustelle Michée,Agossou Chaldia O. A.,Sawadogo Mahamadou,Achigan-Dako Enoch G.

Abstract

Kersting's groundnut [Macrotyloma geocarpum(Harms.) Maréchal and Baudet], Fabaceae, is an important source of protein and essential amino acids. As a grain legume species, it also contributes to improving soil fertility through symbiotic nitrogen fixation. However, the crop is characterized by a relatively low yield (≤500 kg/ha), and limited progress has been made so far, toward the development of high-yielding cultivars that can enhance and sustain its productivity. Recently, there was an increased interest in alleviating the burdens related to Kersting's groundnut (KG) cultivation through the development of improved varieties. Preliminary investigations assembled germplasms from various producing countries. In-depth ethnobotanical studies and insightful investigation on the reproductive biology of the species were undertaken alongside morphological, biochemical, and molecular characterizations. Those studies revealed a narrow genetic base for KG. In addition, the self-pollinating nature of its flowers prevents cross-hybridization and represents a major barrier limiting the broadening of the genetic basis. Therefore, the development of a research pipeline to address the bottlenecks specific to KG is a prerequisite for the successful expansion of the crop. In this paper, we offer an overview of the current state of research on KG and pinpoint the knowledge gaps; we defined and discussed the main steps of breeding for KG' cultivars development; this included (i) developing an integrated genebank, inclusive germplasm, and seed system management; (ii) assessing end-users preferences and possibility for industrial exploitation of the crop; (iii) identifying biotic and abiotic stressors and the genetic control of responsive traits to those factors; (iv) overcoming the cross-pollination challenges in KG to propel the development of hybrids; (v) developing new approaches to create variability and setting adequate cultivars and breeding approaches; (vi) karyotyping and draft genome analysis to accelerate cultivars development and increase genetic gains; and (vii) evaluating the adaptability and stability of cultivars across various ecological regions.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference158 articles.

1. Groundnut (Arachis hypogaea L.) improvement in sub-Saharan Africa: a review;Abady;Acta Agric. Scand. B Soil Plant Sci.,2019

2. Morphological diversity within a core collection of subterranean clover (Trifolium subterraneum L.): lessons in pasture adaptation from the wild;Abdi;PLoS ONE,2020

3. Proximate and anti-nutrient contents of Kersting's groundnut (Macrotyloma geocarpum) subjected to different fermentation methods;Abiola;Brit. Microbiol. Res. J.,2015

4. “Macrotyloma geocarpum (Harms.) Maréchal and Baudet,”;Achigan-Dako,2006

5. “Introduction to quantitative genetics,”;Acquaah,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3