Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania

Author:

Mboyerwa Primitiva A.,Kibret Kibebew,Mtakwa Peter,Aschalew Abebe

Abstract

In rice production greenhouse gas emission (GHG) reduction is an important task for many countries, Tanzania included. Of global agricultural GHG emitted from rice fields, about 30 and 11% are represented by CH4 and N2O, respectively. For successful climate smart rice cultivation, rice management practices, including nitrogen fertilization are two key crucial components that need evaluation. The objective of this study was to evaluate the crop management practices and N fertilization on yield and greenhouse gases emission in paddy rice production, Experiments were designed in split-plot randomized complete block and replicated three times. Two rice management practices namely conventional practice (CP) and system of rice intensification (SRI) and six rates of nitrogen fertilizer (absolute control, 0, 60, 90,120 and 150 kg N ha−1) were applied in two consecutive seasons. The Source-selective and Emission-adjusted GHG CalculaTOR for Cropland (SECTOR) was used to calculate the GHG emission. Methane emission was in the range of 88.7–220.6 kg ha−1season−1, where higher emission was recorded in CP treatments (ABC, CP 0 and CP 120N) compared to SRI treatments. SRI reduced methane and carbon dioxide emission by 59.8% and 20.1% over CP, respectively. Seasonal nitrous oxide emissions was in the range of no detected amount to 0.0002 kgN2O ha−1 where SRI treatments recorded up to 0.0002 kgN2O ha−1 emissions while in CP treatment no amount of N2O was detected. The interaction of system of rice intensification and 90 kg N ha−1 (SRI90N) treatment recorded higher grains yield (8.1, 7.7 t ha−1) with low seasonal global warming potential (GWP) (3,478 and 3,517 kg CO2e ha−1) and low greenhouse gas intensity (0.42, 0.45 kg CO2e per kg paddy) compared to other treatments in wet and dry season, respectively. Therefore, SRI with 90 kg N was the treatment with mitigation potential and reduced GWP without compromising rice yield.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference112 articles.

1. Assessment of the contribution of flooded rice cultivation systems to methane emissions in the lower Ouémé Valley, in Benin Republic;Adounkpe;J. Agric. Chem. Environ.,2021

2. Management of paddy soil towards low greenhouse gas emissions and sustainable rice production in the changing climatic conditions;Ali;Soil Contam. Altern. Sustain. Develop,2019

3. On-Farm evaluation of the potential use of greenhouse gas mitigation techniques for rice cultivation: A case study in Thailand;Arunrat;Climate,2018

4. Effect of seedling age and density on growth and yield of rice in saline soil;Ashraf;Pakistan J. Biol. Sci,1999

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3