Microbial mechanism of soil carbon emission reduction in maize-pea intercropping system with no tillage in arid land areas of northwestern China

Author:

Wang Qi-ming,Chai Qiang,Dou Xue-cheng,Yin Wen,Sun Ya-li,Hu Fa-long,Li Han-ting,Liu Zhi-peng,Wei Jin-gui,Xu Xiao-hui

Abstract

Reducing carbon emissions from agricultural soils contributes to global greenhouse mitigation. Although the integration of no-tillage practices into maize/pea intercropping systems can achieve this reduction, the specific microbial mechanisms involved remain unclear. This study aimed to explore the effects of integrating maize/pea intercropping and no-tillage technologies on soil carbon emissions and microbial communities. The results indicated that intercropping no-till maize with peas reduced the average soil respiration rates by 19%. In 2021 and 2022, intercropping no-till maize with peas decreased soil carbon emissions by 25.1 and 30.4%, respectively. This practice resulted in a reduction of soil microbiota carbon and nitrogen by 26.9 and 19.7%, respectively, while simultaneously increasing the soil microbial gene beta diversity. Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Acidobacteria collectively represented over 95% of the population and were predominant across all treatments. Intercropping no-till maize with peas decreased the abundance of carbohydrate-active enzymes in the soil. The structural equation modeling indicated that combined no-tillage and intercropping practices effectively decreased soil carbon emissions by modulating the community structure of soil microorganisms. This affected the abundance of carbohydrate-active enzymes and carbon-metabolizing genes in the soil. This study indicated that no-tillage and intercropping methods contributed to carbon reduction by influencing soil microbes. This study can provide microbial-level insights for refining agronomic practices to mitigate soil carbon emissions.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3