Effect of plantation age on plant and soil C:N:P stoichiometry in Kentucky bluegrass pastures

Author:

Wei Xiaoxing,He Keyan,Wang Qian,Liu Wenhui,Pang Xiaopan,Guo Zhenggang

Abstract

Plant and soil C:N:P stoichiometry reflects the element content and energy flow, which are important for biogeochemical cycling in ecosystems. Although plantation age has been verified to affect leaf C:N:P stoichiometry in alfalfa plants, its effect on plant and soil C:N:P stoichiometry in grass remains poorly documented. A 10-year field experiment of Kentucky bluegrass (Poa pratensis) was used to test how plantation age affect plant and soil C:N:P stoichiometry in a perennial rhizomatous grass pasture. This study demonstrated that leaf C:N, C:P, and N:P ratios exhibited a rapid increasing trend from 2 to 6 years of age, whereas leaf C:N showed a slight decreasing trend, and leaf C:P and N:P maintained stability from 6 to 9 years of age. Stem C:N and N:P were not different among plantation ages, while stem C:P increased from 2 to 4 years of plantation age and then maintained stability from 4 to 9 years of plantation age. Root N:P showed an increasing trend from 2 to 6 years of plantation age and relative stability from 6 to 9 years of plantation age, whereas root C:N and C:P showed decreasing trends from 2 to 9 years of plantation age. Although soil C:P did not differ among nine plantation ages, soil C:N and N:P remained relatively stable from 2 to 6 years of plantation age. However, soil C:N showed a decreasing trend, while soil N:P showed an increasing trend after 6 years of plantation age. The results from an ecological stoichiometric homeostasis analysis further showed that N in the leaf, stem, and root and P in the stem had strict homeostasis, whereas P in the leaf and root showed plastic and weakly homeostatic status, respectively. These results present a pattern concerning the plantation age in relation to plant and soil C:N:P stoichiometry in a perennial grass and provide useful information for N and P management in Kentucky bluegrass pastures.

Funder

Natural Science Foundation of Qinghai Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3