A Review of Pretreatment Methods to Improve Agri-Food Waste Bioconversion by Black Soldier Fly Larvae

Author:

Peguero Daniela A.,Gold Moritz,Vandeweyer Dries,Zurbrügg Christian,Mathys Alexander

Abstract

As the world population increases, food demand and agricultural activity will also increase. However, ~30–40% of the food produced today is lost or wasted along the production chain. Increasing food demands would only intensify the existing challenges associated with agri-food waste management. An innovative approach to recover the resources lost along the production chain and convert them into value-added product(s) would be beneficial. An alternative solution is the use of the larvae of the black soldier fly (BSFL), Hermetia illucens L., which can grow and convert a wide range of organic waste materials into insect biomass with use as animal feed, fertilizer and/or bioenergy. However, the main concern when creating an economically viable business is the variability in BSFL bioconversion and processing due to the variability of the substrate. Many factors, such as the nutritional composition of the substrate heavily impact BSFL development. Another concern is that substrates with high lignin and cellulose contents have demonstrated poor digestibility by BSFL. Studies suggest that pretreatment methods may improve the digestibility and biodegradability of the substrate by BSFL. However, a systematic review of existing pretreatment methods that could be used for enhancing the bioconversion of these wastes by BSFL is lacking. This paper provides a state-of-the-art review on the potential pretreatment methods that may improve the digestibility of substrates by BSFL and consequently the production of BSFL. These processes include but are not limited to, physical (e.g., mechanical and thermal), chemical (alkaline treatments), and biological (bacterial and fungal) treatments.

Funder

Horizon 2020

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3