Beyond CO2: Multiple Ecosystem Services From Ecologically Intensive Grazing Landscapes of South America

Author:

Tittonell Pablo

Abstract

Sustainability assessments to inform the design of multifunctional grazing landscapes need to look beyond greenhouse gas emissions to simultaneously embrace other social and environmental criteria. Here I briefly examine trade-offs and synergies between the productivity of graze-based livestock systems and the environment, and share a few generic guidelines to design pathways for the ecological intensification of livestock systems following agroecological principles. I draw from experience on livestock farming in the Rio de la Plata Grassland Biome of South America (Argentina, Uruguay, and Brazil). Livestock systems based on native grasslands in this region may have greater carbon footprints (13–29 kg CO2 eq. kg LW−1) than intensive grass-feedlot systems in the region (9–14 kg CO2 eq. kg LW−1) or the average range reported for OECD countries (c. 10–20 kg CO2 eq. kg LW−1) when calculated per unit product, but only 20% greater when expressed on an area basis. Yet they use less external energy (10x) or nitrogen inputs (5x) per kg live weight (LW) produced, provide ecosystem services of local and global importance, such as carbon storage, habitat protection for biodiversity, watershed regulation, clean water, food and textiles, livelihoods and local cultures, and provide better living conditions for grazing animals. Traditional graze-based systems are less economically attractive than intensive livestock or grain production and they are being replaced by such activities, with negative social and environmental consequences. An ecological intensification (EI) of graze-based livestock systems is urgently needed to ensure economic profits while minimising social-ecological trade-offs on multifunctional landscapes. Examples of such EI systems exist in the region that exhibit synergies between economic and environmental goals, but a broad and lasting transition towards sustainable multifunctional landscapes based on agroecological principles requires (co-)innovation at both technical and institutional levels.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3