Author:
Zelingher Rotem,Makowski David
Abstract
This study analyses the quality of six regression algorithms in forecasting the monthly price of maize in its primary international trading market, using publicly available data of agricultural production at a regional scale. The forecasting process is done between one and twelve months ahead, using six different forecasting techniques. Three (CART, RF, and GBM) are tree-based machine learning techniques that capture the relative influence of maize-producing regions on global maize price variations. Additionally, we consider two types of linear models—standard multiple linear regression and vector autoregressive (VAR) model. Finally, TBATS serves as an advanced time-series model that holds the advantages of several commonly used time-series algorithms. The predictive capabilities of these six methods are compared by cross-validation. We find RF and GBM have superior forecasting abilities relative to the linear models. At the same time, TBATS is more accurate for short time forecasts when the time horizon is shorter than three months. On top of that, all models are trained to assess the marginal contribution of each producing region to the most extreme price shocks that occurred through the past 60 years of data in both positive and negative directions, using Shapley decompositions. Our results reveal a strong influence of North-American yield variation on the global price, except for the last months preceding the new-crop season.
Funder
Institut National de la Recherche Agronomique
Subject
Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献