A methodological framework proposal for managing risk in small-scale farming through the integration of knowledge and data analytics

Author:

Casanova Olaya Juan Fernando,Corrales Juan Carlos

Abstract

IntroductionClimate change and weather variability pose significant challenges to small-scale crop production systems, increasing the frequency and intensity of extreme weather events. In this context, data modeling becomes a crucial tool for risk management and promotes producer resilience during losses caused by adverse weather events, particularly within agricultural insurance. However, data modeling requires access to available data representing production system conditions and external risk factors. One of the main problems in the agricultural sector, especially in small-scale farming, is data scarcity, which acts as a barrier to effectively addressing these issues. Data scarcity limits understanding the local-level impacts of climate change and the design of adaptation or mitigation strategies to manage adverse events, directly impacting production system productivity. Integrating knowledge into data modeling is a proposed strategy to address the issue of data scarcity. However, despite different mechanisms for knowledge representation, a methodological framework to integrate knowledge into data modeling is lacking.MethodsThis paper proposes developing a methodological framework (MF) to guide the characterization, extraction, representation, and integration of knowledge into data modeling, supporting the application of data solutions for small farmers. The development of the MF encompasses three phases. The first phase involves identifying the information underlying the MF. To achieve this, elements such as the type of knowledge managed in agriculture, data structure types, knowledge extraction methods, and knowledge representation methods were identified using the systematic review framework proposed by Kitchemhan, considering their limitations and the tools employed. In the second phase of MF construction, the gathered information was utilized to design the process modeling of the MF using the Business Process Model and Notation (BPMN).Finally, in the third phase of MF development, an evaluation was conducted using the expert weighting method.ResultsAs a result, it was possible to theoretically verify that the proposed MF facilitates the integration of knowledge into data models. The MF serves as a foundation for establishing adaptation and mitigation strategies against adverse events stemming from climate variability and change in small-scale production systems, especially under conditions of data scarcity.DiscussionThe developed MF provides a structured approach to managing data scarcity in small-scale farming by effectively integrating knowledge into data modeling processes. This integration enhances the capacity to design and implement robust adaptation and mitigation strategies, thereby improving the resilience and productivity of small-scale crop production systems in the face of climate variability and change. Future research could focus on the practical application of this MF and its impact on small-scale farming practices, further validating its effectiveness and scalability.

Funder

Sistema General de Regalías de Colombia

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3