Increased Resilience of Peas Toward Root Rot Pathogens Can Be Predicted by the Nematode Metabolic Footprint

Author:

Schmidt Jan H.,Theisgen Leonard V.,Finckh Maria R.,Šišić Adnan

Abstract

Legumes are important drivers of soil fertility, however, their frequent use in rotations fosters long-lived soil-borne pathogens that can seriously compromise legume root health and nitrogen fixation. To overcome this, the current study aims at improving the general soil suppressiveness toward pests and diseases by agroecosystem management that can be predicted by nematode-based bioindicators. Two long-term organically managed agroecosystems comparing plow and shallow non-inversion tillage were analyzed for free-living nematode communities. Soils out of these agroecosystems were evaluated further in a greenhouse assay for their ability to suppress pea root rot caused by Didymella pinodella, Fusarium avenaceum, and F. redolens. There was a general trend for higher levels of pea root rot disease severity following inoculations with single pathogens, however, this effect was heterogeneous among experiments and tillage systems. This was mainly due to an already very high resident population of D. pinodella in soil and the presence of seed-borne F. oxysporum determined by their high incidence in pea roots irrespective of the soil and inoculated pathogens. Additional inoculation with D. pinodella, for example, resulted in only 8.5% biomass reduction compared to the non-inoculated control, in both tillage systems. Similar biomass losses were recorded in non-inversion tilled soils inoculated with F. redolens. When analyzed across inoculation treatments, the pea root rot disease severity was only slightly reduced in non-inversion tilled soils when compared to the plough systems (11% in Exp 1 and, 9% in Exp 2), however in both experiments non-inversion tillage resulted in greater pea biomass (33 and 19% in Exp1 and 2, respectively). Furthermore, the metabolic, enrichment, and bacterivore carbon footprints of nematodes were 88, 81, and 97% higher, respectively, in the non-inversion tilled soils compared to the plough. The metabolic carbon footprint of nematodes correlated negatively with pea root rot disease severity (rho = −0.71, p = 0.047). Hence, non-inversion tillage was effective in controlling pea root rot. The use of nematode metabolic footprints for predicting soil health should be extended for various agroecosystems aiming for its general use in evaluating effects of agroecosystem management through researchers and potentially farm management advisors.

Funder

Deutsche Forschungsgemeinschaft

Seventh Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3