Rediscovering wild food to diversify production across Australia's agricultural landscapes

Author:

Canning Adam D.

Abstract

Conventional agriculture currently relies on the intensive and expansive growth of a small number of monocultures, this is both risky for food security and is causing substantial environmental degradation. Crops are typically grown far from their native origins, enduring climates, pests, and diseases that they have little evolutionary adaptation to. As a result, farming practices involve modifying the environment to suit the crop, often via practices including vegetation clearing, drainage, irrigation, tilling, and the application of fertilizers, pesticides, and herbicides. One avenue for improvement, however, is the diversification of monoculture agricultural systems with traditional foods native to the area. Native foods benefit from evolutionary history, enabling adaptation to local environmental conditions, reducing the need for environmental modifications and external inputs. Traditional use of native foods in Australia has a rich history, yet the commercial production of native foods remains small compared with conventional crops, such as wheat, barley and sugarcane. Identifying what native crops can grow where would be a first step in scoping potential native food industries and supporting farmers seeking to diversify their cropping. In this study, I modeled the potentially suitable distributions of 177 native food and forage species across Australia, given their climate and soil preferences. The coastal areas of Queensland's wet tropics, south-east Queensland, New South Wales, and Victoria were predicted to support the greatest diversity of native food and forage species (as high 80–120 species). These areas also correspond to the nation's most agriculturally intensive areas, including much of the Murray-Darling Basin, suggesting high potential for the diversification of existing intensive monocultures. Native crops with the most expansive potential distribution include Acacia trees, Maloga bean, bush plum, Emu apple, native millet, and bush tomatoes, with these crops largely being tolerant of vast areas of semi-arid conditions. In addition to greater food security, if diverse native cropping results in greater ecosystem service provisioning, through carbon storage, reduced water usage, reduced nutrient runoff, or greater habitat provision, then payment for ecosystem service schemes could also provide supplemental farm income.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3