Soybean crop intensification for sustainable aboveground-underground plant–soil interactions

Author:

Singh Ramesh Kumar,Upadhyay Pravin Kumar,Dhar Shiva,Rajanna G. A.,Singh Vinod Kumar,Kumar Rakesh,Singh Rajiv Kumar,Babu Subhash,Rathore Sanjay Singh,Shekhawat Kapila,Dass Anchal,Kumar Amit,Gupta Gaurendra,Shukla Gaurav,Rajpoot Sudhir,Prakash Ved,Kumar Bipin,Sharma Vinod Kumar,Barthakur Sharmistha

Abstract

The major challenge of growing soybean, other than unfavorable weather and small farm size, is the non-availability of quality inputs at the right time. Furthermore, in soybean growing regions, crop productivity and soil environment have deteriorated due to the use of traditional varieties and conventional methods of production. Soybean crop intensification or system of crop intensification in soybean (SCI) is an agricultural production system that boosts soybean yields, improves the soil environment, and maximizes the efficiency of input utilization, although the contribution of SCI to crop productivity is not well understood as different genotypes of soybean exhibit different physiological responses. Therefore, a field study was conducted in 2014–2015 and 2015–2016 using three crop establishment methods (SCI at a 45 cm × 45 cm row spacing, SCI at 30 cm × 30 cm, and a conventional method at 45 cm × 10 cm) assisted in vertical strips with four genotypes (Pusa 9,712, PS 1347, DS 12–13, and DS 12–5) using a strip-plot design with three replications. Compared with standard methods of cultivation, the adoption of SCI at 45 cm × 45 cm resulted in a significantly higher stomatal conductance (0.211 mol H2O m−2 s−1), transpiration rate (7.8 mmol H2O m−2 s−1), and net photosynthetic rate (398 mol CO2 m−2 s−1). The implementation of an SCI at 30 cm × 30 cm had significantly greater intercepted photosynthetic active radiation (PAR) (1,249 mol m−2 s−1) than the conventional method system, increasing crop yield from 9.6 to 13.3% and biomass yield from 8.2 to 10.7%. In addition, under an SCI at 30 cm × 30 cm, there were more nodules, significantly larger root volume and surface density, and increased NPK uptake compared with the other methods. Significantly greater soil dehydrogenase activity, alkaline phosphatase activity, acetylene-reducing assay, total polysaccharides, microbial biomass carbon, and soil chlorophyll were found with SCI at 45 cm × 45 cm (13.63 g TPF g−1 soil hr.−1, 93.2 g p-nitro phenol g−1 soil hr.−1, 25.5 n moles ethylene g−1 soil hr.−1, 443.7 mg kg−1 soil, 216.5 mg kg−1 soil, and 0.43 mg g−1 soil, respectively). Therefore, the adoption of an SCI at 30 cm × 30 cm and/or 45 cm × 45 cm could provide the best environment for microbial activities and overall soil health, as well as the sustainable productivity of soybean aboveground.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3