Nutritional Evaluation of Tropical Forage Grass Alone and Grass-Legume Diets to Reduce in vitro Methane Production

Author:

Quintero-Anzueta Stiven,Molina-Botero Isabel Cristina,Ramirez-Navas Juan Sebastian,Rao Idupulapati,Chirinda Ngonidzashe,Barahona-Rosales Rolando,Moorby Jon,Arango Jacobo

Abstract

Forage grass nutritional quality directly affects animal feed intake, productivity, and enteric methane (CH4) emissions. This study evaluated the nutritional quality, in vitro enteric CH4 emission potential, and optimization of diets based on two widely grown tropical forage grasses either alone or mixed with legumes. The grasses Urochloa hybrid cv. Cayman (UHC) and U. brizantha cv. Toledo (UBT), which typically have low concentrations of crude protein (CP), were incubated in vitro either alone or mixed with the legumes Canavalia brasiliensis (CB) and Leucaena diversifolia (LD), which have higher CP concentrations. Substitution of 30% of the grass dry matter (DM) with CB or LD did not affect gas production or DM degradability. After 96 h of incubation, accumulated CH4 was 87.3 mg CH4 g−1 DM and 107.7 mg CH4 g−1 DM for the grasses alone (UHC and UBT, respectively), and 100.7 mg CH4 g−1 DM and 113.2 mg CH4 g−1 DM for combined diets (70% grass, 15% CB, and 15% LD). Diets that combined legumes (CB or LC) and grass (UHC or UBT) had higher CP contents, gross, and metabolizable energy (GE, ME, respectively) densities, as well as lower concentrations of neutral detergent fiber (NDF) and acid detergent lignin (ADL). The ME and nutritional variables such as NFD, tannins (T), and CP showed a positive correlation with in vitro net gas production, while ruminal digestibility was affected by CP, ADL, T, and GE. Optimal ratios of components for ruminant diets to reduce rumen net gas production and increase protein content were found with mixtures consisting of 60% grass (either UHC or UBT), 30% CB, and 10% LD. However, this ratio did not result in a decrease in CH4 production.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3