Author:
Wang Jia,Tian Guixian,Tao Yongchao,Lu Chengwu
Abstract
Scientific prediction of agricultural food production plays an essential role in stabilizing food supply. In order to improve the accuracy of grain yield prediction and reduce the error of grain yield prediction in Chongqing, this paper proposes a new method for the grain yield prediction in Chongqing by using support vector machine (SVM). In this paper, based on the support vector regression structure, the support vector regression algorithm is designed, and then the support vector machine is adopted in the replacement of the error back propagation process in BP neural network. The results of case analysis show that the method based on support vector machine can effectively reduce the error of grain yield prediction.
Subject
Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献