Differential Plant Growth Promotion Under Reduced Phosphate Rates in Two Genotypes of Maize by a Rhizobial Phosphate-Solubilizing Strain

Author:

Beltran-Medina Jose I.,Romero-Perdomo Felipe,Molano-Chavez Lady,Silva Antonio M. M.,Estrada-Bonilla German A.

Abstract

The biotechnological manipulation of phosphate-solubilizing bacteria (PSB) is gaining prominence to improve the poor phosphorus (P) availability in the soil and maintain crop yields. In this study, we investigated howRhizobiumsp. B02 inoculation influences maize crop development and whether its use reduces phosphate fertilizer rates. We conducted growth promotion assays using P fertilizer doses in two maize genotypes under greenhouse conditions. Morphometric, physiological, and productivity parameters were assessed in three phenological stages: tillering (V5), tassel (VT), and maturity (R6). Maize response was significantly influenced by both inoculation and plant genotype, showing that the plant-promoting effect of inoculation is substantially more prominent in the white endosperm than in the yellow endosperm maize genotype. The development of maize in all phenological stages was promoted by inoculation withRhizobiumsp. B02. The most significant influence of inoculation was observed on shoot dry weight, relative chlorophyll content, shoot P concentration, leaf area, photosynthetic rate, 1,000-grain weight, and grain yield. A 17% gain in grain yield, representing 20 g plant−1, was obtained by inoculation with 50% diammonium phosphate (DAP) compared with the control treatment at the same dose. The complete fertilization control was phenocopied by the white endosperm inoculated at 50% DAP in all productivity parameters. Therefore, half of the P fertilization in white endosperm was replaced by inoculation withRhizobiumsp. B02. Herein, we report the potential of aRhizobiumstrain in a non-legume crop to improve P management.

Funder

Ministerio de Agricultura y Desarrollo Rural

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3