Effects of short-term drought, nitrogen application and their interactions on the composition and functional genes of soil microbial communities in alfalfa grassland on the Loess Plateau

Author:

Wang Ruobing,Zhang Jingui,Ma Tao,Lv Wenqiang,Zhang Zhixin,Shen Yuying,Yang Qian,Wang Xianzhi,Li Jiaxuan,Xiang Qian,Lv Long,Zhang Jianjun,Ma Jingyong

Abstract

Drought and nitrogen addition are important factors influencing soil microorganisms and changes in the soil environment. In the future, droughts will become more frequent, shorter, and more severe. However, little is known about the soil organic carbon components, enzyme activity, and composition, structure, and functional genes of soil microbial communities under short-term drought and nitrogen application conditions. In this study, we used metagenomics sequencing technology to explore the changes in the composition and functional genes of soil microbial communities under short-term drought, nitrogen application, and their interactions in the artificial grasslands of the Loess Plateau. The results indicated that (I) short-term drought, nitrogen application, and their interactions all increased the particulate organic carbon (POC) content. (II) Short-term drought increased the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), as well as soil enzyme activity. (III) Short-term drought significantly increased the bacterial alpha diversity, whereas the interactions of short-term drought and nitrogen application enhanced the fungal alpha diversity. (IV) The interactions of short-term drought and nitrogen application inhibited Fusarium to prevent plant diseases. (V) Short-term drought enriched the relative abundance of genes related to carbon cycling and amino acid metabolism, while nitrogen application reduced genes related to carbon cycling but enriched genes related to glycan biosynthesis and metabolism. These results clearly showed that, short-term drought altered the composition and functional genes of soil microbial communities. Our research suggests that in the event of frequent short-term droughts in the future, nitrogen addition can be considered to maintain the diversity of soil microbial communities and sustain soil carbon and nitrogen cycling.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3