Lasting effect of Urochloa brizantha on a common bean-wheat-maize rotation in a medium-term no-till system

Author:

Crusciol Carlos Alexandre Costa,Santos Ferreira João Henrique,Momesso Letusa,Portugal José Roberto,de Campos Murilo,Volf Marcelo Raphael,Borghi Emerson,Soratto Rogério Peres,Calonego Juliano Carlos

Abstract

Grass intercropping under no-till is an option to increase crop residues on the soil surface and crop diversity. Urochloa spp. is frequently selected for intercropping to improve land use and agricultural production because of its high residue production, slow residue decomposition, as well as its vigorous, abundant, and deep root system. However, the effects of intercropping Urochloa and maize, especially the effects of Urochloa residues, on subsequent crops in rotation have not been established. To address this knowledge gap, a field experiment was carried out over 5 years (from 2014 to 2018) comprising 2 years of maize monocropping or intercropping and 3 years of crop rotation (common bean-wheat-common bean-wheat-maize). We evaluated the medium-term effects of monocropped maize or maize intercropped with Urochloa brizantha on soil fertility and the development, yields, and grain nutrient accumulation of subsequent common bean, wheat, and maize crops. The cultivation of U. brizantha in the intercropping system improved soil fertility over at least 4 years, with increases in soil pH; soil organic matter (SOM); phosphorus (P); exchangeable potassium (K), calcium (Ca), and magnesium (Mg); sulfur (S–SO42−); cation exchange capacity (CEC); and base saturation (BS) at all soil depths. The benefits of U. brizantha extended to root dry matter and distribution; 70–77% of the total roots were concentrated within a soil depth of 0.0–0.2 m. The intercropping system improved the root dry matter mass, yield components, and grain yields of subsequent common bean, wheat, and maize crops in all cultivation years. These findings indicate that intercropping maize and U. brizantha provides medium-term benefits for subsequent common bean, wheat, and maize crops, and improves nutrient cycling to increase soil P; exchangeable K, Ca, and Mg; S–SO42−; and organic matter content.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3