Effects of Crop Rotation on Spring Wheat Yield and Pest Occurrence in Different Tillage Systems: A Multi-Year Experiment in Finnish Growing Conditions

Author:

Jalli Marja,Huusela Erja,Jalli Heikki,Kauppi Katja,Niemi Mari,Himanen Sari,Jauhiainen Lauri

Abstract

Crop rotation and soil tillage are among key factors impacting cropping system productivity, pest management and soil health. To assess their role in northern cropping systems, we quantified the effects of crop rotation on spring wheat yield in different tillage systems based on a long-term (2005–2017) field experiment in southwestern Finland. In addition, effects of crop rotation on weeds, plant pathogens, and pest insects were assessed. Three types of crop rotation were compared: monoculture (spring wheat), 2-year rotation (spring wheat—turnip rape—spring wheat—barley) and 4-year rotation (spring wheat—turnip rape—barley—pea) under no-tillage and plowing. A diversified crop rotation improved spring wheat yield by up to 30% in no-tillage and by 13% under plowing compared with monoculture. Overall, the yield quantity and quality differences between crop rotations were higher in no-tillage plots than in plowed plots. The occurrence of weed species in spring wheat before herbicide control was highest in the four-year crop rotation and lowest in the wheat monoculture. For plant diseases, wheat leaf blotch disease severity, mainly caused by Pyrenophora tritici-repentis, was lowest in the most diverse crop rotation. On average, wheat leaf blotch disease severity was 20% less when wheat was grown every fourth year compared with wheat monoculture. The effect of crop rotation on stem and root diseases became apparent after 6 years of rotation and the disease index was lowest in the most diverse crop rotation. Neither rotation nor tillage affected the control need of wheat midge (Sitodiplosis mosellana). Based on our results, diverse crop rotations including cereals, oilseed crops, and legumes increase yield and reduce plant disease severity of spring wheat in Finland, with the magnitude being larger in no-tillage systems.

Funder

Suomen Kulttuurirahasto

Maa- ja Mets�talousministeri�

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3