Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability

Author:

Munyai Rabelani,Ogola Henry Joseph Oduor,Modise David Mxolisi

Abstract

Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.

Funder

University of South Africa

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3