Deciphering the role of phosphorus management under conservation agriculture based wheat production system

Author:

Kumar Amit,Behera Uma Kant,Dhar Shiva,Babu Subhash,Singh Raghavendra,Upadhyay Pravin Kumar,Saha Saurav,Devadas Ramgopal,Kumar Adarsh,Gupta Gaurendra,Singh Ramesh Kumar,Gudade Bharat Arjun,Karan Shyam,Verma Gaurav

Abstract

Phosphorus (P) is a vital element required by all living organism (plants, animals and microbes etc.). Its application in agriculture, whether in conventional or conservation agriculture, requires careful attention due to its low use efficiency, which typically does not exceed 20%. With the increasing acceptance of conservation agriculture (CA), it is crucial to develop protocols for P management to ensure sustainable wheat production. Therefore, a field trial was conducted from 2016–2017 to 2017–2018 in the India's semiarid eco-region to study the role of P on wheat productivity, quality, and resource use efficiency under CA-based production system. We assessed the impact of tillage operations and P management practices on wheat productivity, quality, and resource use efficiency. Three tillage and residue management options such as CT-R (conventional tillage without residue); NT-R (no tillage without maize residue) and NT + R (no tillage with maize residue @ 2.5 Mg ha−1) were laid-out in main plot and five P management options subplots viz. P1 (nitrogen and potash according to recommended but not P); P2 (17.2 kg P ha−1); P3 (17.2 kg of P ha−1 + microbial fertilizer); P4 (17.2 kg P ha−1 + compost inoculant culture) and P5 (34.4 kg P ha−1) in split plot design with three replicates. The results indicates that the combination of no-tillage with residue retention (maize residue @ 2.5 Mg ha−1) (NT + R) and the application of 34.4 kg P ha−1 (P5) significantly improved grain yield by ~43.2% compared to the control treatment (conventional tillage with no residue, CT – R, and no phosphorus application). NT + R also resulted in significantly better amino acid (~22.7%) and net protein yield (~21.2%) compared to CT – R. Regarding the P management strategy, the highest amino acid (49.1%) and protein yield (12.5%) were observed under the P5 treatment compared to the no-phosphorus treatment. Conjoint use of NT – R, along with the application of 17.2 kg P ha−1 and PSB (Phosphorus Solubilizing Bacteria), resulted in a significant increase in energy use efficiency of ~58% over other treatments combination. Furthermore, the NT + R plot that received 17.2 kg P ha−1 + PSB demonstrated higher P agronomic efficiency (~43%) and recovery efficiency (~53%) over control. The study's findings underscore the significance of adopting efficient P management strategies in CA to ensure the sustainable production of wheat.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference48 articles.

1. “AACC method 46-11.02. Crude protein–improved Kjeldahl method, copper catalyst modyfication,”,2010

2. Directorate of Economics and Statistics Department of Agriculture, Cooperation and Farmers Welfare Second Advance Estimates of Production of Food Grains for 27/02/20182022

3. Integrated phosphorus management improves production of rice–wheat cropping system under salt affected conditions;Ahmed;Int. J. Plant Prod.,2017

4. Effect of different levels of phosphorus on growth, yield and quality of wheat (Triticum aestivum L.);Ali;Int. J. Bot. Stud.,2020

5. Impact of long-term conservation agriculture practices on phosphorus dynamics under maize-based cropping systems in a sub-tropical soil;Anil;Land,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3