Spatio-temporal variability of climatic variables and its impacts on rice yield in Bangladesh

Author:

Al Mamun Md. Abdullah,Nihad Sheikh Arafat Islam,Sarkar Md. Abdur Rouf,Sarker Mou Rani,Skalicka Jitka,Skalicky Milan

Abstract

Bangladesh is a significant contributor to the global food basket but is also one of the most vulnerable countries to climate change. Understanding regional climatic variability helps reduce climate risks and ensure food security. This research examined monthly, seasonal, and yearly temperature, rainfall, and relative humidity in Bangladesh using data from 35 meteorological stations from 1970–2020. The study utilized the Mann–Kendall method to evaluate trends and employed Sen’s slope to quantify their magnitude. Additionally, quantile regression was applied to analyze the impact of climatic variables on rice yield. The findings revealed that maximum (Tmax) and minimum (Tmin) temperatures were steadily increasing, with the southwest experiencing a more rapid rise compared to other regions in Bangladesh. Seasonal Tmax and Tmin rose in most parts of Bangladesh, particularly during the monsoon. In most areas, there was a significant (p < 0.05) increase in Tmax from June to September and Tmin in December. The variability of minimum temperature was considerably affected by warming throughout the country. The eastern area had the most significant (p < 0.05) annual rainfall increase rate, while the northern region had the lowest. There was evidence of inter-seasonal rainfall shipment, with post-monsoon rainfall rising compared to monsoon season. The quantile regression showed that the rice yield of Aus (summer) and Aman (wet) seasons were influenced by maximum temperature and relative humidity, whereas the rice yield of the Boro (dry) season was affected by maximum temperature, rainfall, and relative humidity. Across geographical segmentation, the regression analysis indicated a high level of variability in the northern climate. Overall, the intensity of mean temperature increased throughout the country. So, there is a need to develop heat or drought-resistant rice varieties and modernized irrigation facilities to mitigate these climate risks. However, farmers should employ automated weather-based advisory services for sustaining rice productivity and food security.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3