Reductions in soil water nitrate beneath a perennial grain crop compared to an annual crop rotation on sandy soil

Author:

Reilly Evelyn C.,Gutknecht Jessica L.,Sheaffer Craig C.,Jungers Jacob M.

Abstract

Nitrate (NO3--N) leaching into groundwater as a result of high nitrogen (N) fertilizer rates to annual crops presents human health risks and high costs associated with water treatment. Leaching is a particularly serious concern on sandy soils overlying porous bedrock. Intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host.) Barkw. & D.R. Dewey], is a perennial grass that is being bred to produce agronomically and economically viable grain, which is commercially available as Kernza®. Intermediate wheatgrass is a low-input crop has the potential to produce profitable grain and biomass yields while reducing NO3--N leaching on sandy soils compared with common annual row crop rotations in the Upper Midwest. We compared grain yields, biomass yields, soil solution NO3--N concentration, soil extractable NO3--N, soil water content, and root biomass under IWG and a conventionally managed corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotation for 3 years on a Verndale sandy loam in Central Minnesota. Mean soil solution NO3--N was 77–96% lower under IWG than the annual crop rotation. Soil water content was greater under annuals compared to IWG early in the growing season, suggesting greater water use by IWG during this time. Interactions between crop treatments and depth were observed for soil water content in Year 3. Root biomass from 0 to 60 cm below the soil surface was five times greater beneath IWG compared to soybean, which may explain differences in soil extractable and solution NO3--N among crops. With irrigation on coarse structured soils, IWG grain yields were 854, 434, and 222 kg ha−1 for Years 1–3 and vegetative biomass averaged 4.65 Mg ha−1 yr−1; comparable to other reports on heavier soils in the region. Annual crop grain yields were consistent with local averages. These results confirm that IWG effectively reduces soil solution NO3--N concentrations even on sandy soils, supporting its potential for broader adoption on land vulnerable to NO3--N leaching.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference47 articles.

1. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services;Asbjornsen;Renew. Agric. Food Syst.,2014

2. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar;Bajgain;J. Plant Regist.,2020

3. Biomass Yield and Soil Microbial Response to Management of Perennial Intermediate Wheatgrass (Thinopyrum intermedium) as Grain Crop and Carbon Sink;Bergquist,2019

4. Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study;Brender;Environ. Health Perspect.,2013

5. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat: root traits and water uptake;Carvalho;J. Integr. Plant Biol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3